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Abstract. We extend the ideas introduced in [TNV04] for hierarchical multiscale decompo-
sitions of images. Viewed as a function f ∈ L2(Ω), a given image is hierarchically decomposed
into the sum or product of simpler “atoms” uk, where uk extracts a more refined informa-
tion from the previous scale uk−1. To this end, the uk’s are obtained as dyadically scaled
minimizers of standard functionals arising in image analysis. Thus, starting with v−1 := f
and letting vk denote the residual at a given dyadic scale, λk ∼ 2k, then the recursive step
[uk, vk] = arginfQT (vk−1, λk) leads to the desired hierarchical decomposition, f ∼

∑
Tuk;

here T is a blurring operator. We characterize such QT -minimizers (by duality) and expand
our previous energy estimates of the data f in terms of ‖uk‖. Numerical results illustrate
applications of the new hierarchical multiscale decomposition for blurry images, images with
additive and multiplicative noise and image segmentation.
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1. Introduction

We continue our study of the hierarchical image decomposition method introduced by the
authors in [TNV04] (hereafter abbreviated TNV). We extend the hierarchical decomposition
method to the case of functionals arising in image deblurring, in multiplicative image denoising,
and in image segmentation. Convergence results and energy estimates are given, together with
experimental results on real images.
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1.1. Hierarchical (X,Y ) decompositions. We begin with a pair of normed function spaces,
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ), and their associated Q-functional,

Q(f, λ) := Q(f, λ;X,Y ) := inf
u∈X

{
‖u‖X + λ‖f − u‖2

Y

}
, λ > 0.(1.1)

We will talk about functions in the smaller space X being “smoother” than those in Y , so that
the condition ‖u‖X < ∞ can be viewed as a regularizing constraint. The use of regularized
Q-like functionals has a long history starting with the classical Tikhonov-type regularizations,
consult [TA77, Mo84, Mo93]. They can be found in a variety of applications; we mention here
two: the work on support vector regression, e.g., [Va98], and the early works in the context of
image processing [GG84, AV94, RO94, GS00, GS00]. In these works, λ is treated as a fixed
threshold parameter. The Q-functional (1.1) is also closely related to the standard K-functional
which arises in interpolation theory, e.g., [BL76, BS88, DL93, Kr07],

K(f, λ;X,Y ) := inf
u∈X

{
‖u‖X + λ‖f − u‖Y

}
, λ > 0.

The relation between the Q- and the K-functionals is summarized in

Q(f, µλ;X,Y ) ≈ K(f, λ;X,Y ), µλ :=
λ2

K(f, λ)
.

In this context of K-functionals, however, λ does not just serve as a threshold parameter, but in
fact is treated as a variable: the collection of f ’s with prescribed behavior of K(f, λ) as λ ↑ ∞,
forms intermediate interpolation smoothness spaces∗. This is the point of view we adopt in the
hierarchical decomposition of Q-functionals described below, with λ being treated as a scaling
variable.

We assume that the minimization problem has a solution u := uλ, and we let vλ denote the
residual, vλ := f − uλ. This will be expressed as

f = uλ + vλ, [uλ, vλ] = arginf
u+v=f

Q(f, λ;X,Y ).(1.2a)

In general, ‖u‖X will be a regularizing term, thus uλ will contain only the “larger” features of
f , while the residual vλ will contain the “smaller” features. Of course, the distinction between
these two components is scale dependent – whatever is interpreted as ‘small’ features at a given
λ-scale, may contain significant features when viewed under a refined scale, say 2λ,

vλ = u2λ + v2λ, [u2λ, v2λ] = arginf
u+v=vλ

Q(vλ, 2λ).(1.2b)

By combining (1.2a) with (1.2b) we arrive at a better two-scale representation of f given by
f ≈ uλ + u2λ. Features below scale 1/2λ remain unresolved in v2λ but, the process (1.2b) can
be continued. Starting with an initial scale λ = λ0,

f = u0 + v0, [u0, v0] = arginf
u+v=f

Q(f, λ0),(1.3a)

∗Observe that the definition of the K-functional here exchanges the usual ordering between X and Y , so that
it scales with increasing λ, in order to keep the compatability with the usual use of the scaling of Q-functional
in image processing.
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a more refined decomposition of f into simpler “atoms” is obtained by successive application
of the dyadic refinement step (1.2b),

vj = uj+1 + vj+1, [uj+1, vj+1] := arginf
u+v=vj

Q(vj, λ02
j+1;X,Y ), j = 0, 1, ....(1.3b)

After k such steps, we end up with the following hierarchical decomposition of f

f = u0 + v0 =

= u0 + u1 + v1 =

= . . . . . . =

= u0 + u1 + · · · + uk + vk.(1.4)

The above multiscale expansion provides a new hierarchical representation of the data f ,

f ∼
=

∞∑

j=0

uj,(1.5)

where the approximate equality ∼
= in (1.5) should be interpreted as the convergence of the

residuals vk’s in (1.4) to be made precise below. The partial sum,
∑k

j=0 uj, provides a multi-
layered description of f which lies in an intermediate scale of spaces, in between X and Y ,
though the precise regularity may vary, depending on the scales which are present in f .

Remark 1.1. [The homogeneity of the hierarchical decomposition]. We note here the anomaly
of the Q-functional (1.1): when an image f with minimizer [u, v] doubles its intensity, 2f , its
minimizer does not scale accordingly since the quadratic-based Q is not homogeneous. This
anomaly of the Q-functionals is fixed by their hierarchical decompositions. To this end, we
observe that if [u0, v0] is the minimizing pair of Q(f, λ) then [2u0, 2v0] is the minimizer of
Q(2f, λ/2). Consequently, if an image f has the hierarchical description (1.3b), f ∼

=

∑∞
j=0 uj,

then we find recursively,

2vj = 2uj+1 + 2vj+1, [2uj+1, 2vj+1] := arg inf
u+v=2vj

Q(vj, λ02
j ;X,Y ), j = 0, 1, ....

We conclude that the hierarchical decomposition is homogeneous of degree one: when doubling

the intensity, 2f has the corresponding hierarchical decomposition 2f ∼
=

∞∑

j=0

2uj .

1.2. Hierarchical (BV,L2) decomposition. As a prototype example, we discuss the hier-
archical (BV,L2) decomposition introduced in TNV. A special case of Tikhonov regulariza-
tion with (X,Y ) = (BV (Ω), L2(Ω)) is the Rudin-Osher-Fatemi Total Variation (TV) func-
tional∗. It was advocated by Rudin, Osher and Fatemi [ROF92] who proposed the func-
tional, Q(f, λ,BV (Ω), L2(Ω)), to recover a sharp image u from its noisy version f = u + v,
prescribed over an open bounded domain Ω ⊂ IR2. Here, ‖f − u‖2

L2(Ω) is a fidelity term,

|u|BV (Ω) :=
∫
|Du| = ‖u‖ ˙BV (Ω) is a regularizing term preserving edges, and λ > 0 is a threshold

parameter which measures their relative weight. For f ∈ L2(Ω), the problem admits a unique
minimizer u := uλ (consult [AV94], [CL97], or [Ve01] for a more general regularizing term),
which decomposes an L2(Ω)-image, f , into two distinct components,

f = uλ + vλ, [uλ, vλ] = arginf
u+v=f

Q(f, λ;BV (Ω), L2(Ω)).(1.6)

∗TV should not be confused with TNV.
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This TV-based model is a very effective tool in denoising images while preserving edges
provided apriori information on the noise scaling, λ, is known. Otherwise, if Q(f, λ) is being
implemented with a too small λ, then only a cartoon representation of f is kept in the form
of uλ ∈ BV (Ω), while small textured patterns or oscillatory details are swept into the residual
vλ := f − uλ. If, on the other hand, λ is kept too large, then uλ remains loaded with too
many details which is close to the original f ; not much change has been applied to f and
the compression ratio is small. In some cases, e.g., [ROF92, CL97], the parameter λ can be
estimated if some statistical information on the noise is known, but in general, this setup is
limited by the use of the one scale dictated by λ. The corresponding (BV,L2)-hierarchical
decomposition introduced by the authors in [TNV04],

f ∼
=

∑

j

uj, uj ∈ BV (Ω),(1.7)

is independent of apriori parameters and is particularly suitable for image representations. The
resulting multi-layered expansion, f ∼

∑
j uj, is essentially nonlinear in the sense that its

dyadic blocks, uj, depend on the data itself, uj = uj(f). The dyadic blocks capture different
layers of scales of the original image. Their precise multiscale nature is quantified in the energy
decomposition derived in TNV,

‖f‖2
L2(Ω) =

∞∑

j=0

[
1

λj
|uj|BV (Ω) + ‖uj‖2

L2(Ω)

]
.

Multi-layered representations of images are not new. We mention here those based on wavelet
expansions, e.g., [MAC02], [ACMS98], and the TV based expansion suggested by Rudin and
Caselles in [RC]. The hierarchical, multi-layered (BV,L2)-decompositions (1.7) were found to
be an effective tool in image processing, [TNV04, BCM05] and image registration [LPSX06,
PL07]. They can be extended to application of image denoising in the presence of additive or
multiplicative noise, to image deblurring or to image segmentation. These will be discussed in
the sections below.

2. Hierarchical decomposition of blurry and noisy images

We are given a blurred image, represented by f ∈ L2(Ω); blurring will be modeled by a
linear, continuous blurring operator, T : L2(Ω) → L2(Ω) (such as a convolution with a Gaussian
kernel). We consider a decomposition of f provided by the following QT (f, λ) minimization in
the presence of blur,

QT (f, λ;X(Ω), L2(Ω)) := inf
u∈BV (Ω)

{
‖u‖ + λ‖f − Tu‖2

L2(Ω)

}
.(2.1a)

Here, the regularization functional ‖ · ‖ : X ⊂ BV (Ω) → [0,∞] is a semi-norm which takes a
general form,

‖u‖ ≡ ‖u‖p :=

∫

Ω

φ(Dpu), p ≥ 1.(2.1b)

Few examples for such regularizing functionals are in order. If ‖u‖ = |u|BV (Ω) =
∫

Ω
|Du|

is the total variation of u, then (2.1a) becomes the denoising-deblurring model introduced in
[ROF92, RO94]. A more general BV-type model is provided by ‖u‖ =

∫
Ω

φ(|Du|) with a
proper norm, φ, defined on the space of measures; the corresponding QT in(2.1a) then becomes
the generalized BV model studied in [DT84, Ve01, EO04]. Other examples, defined on dense
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subspaces of BV, are provided by ‖u‖ = ‖Du‖L2(Ω) : H1(Ω) → [0,∞), or the second-order
‖u‖2 =

∫
Ω
|D2u| : BH(Ω) → [0,∞) defined on BH, the space of functions with bounded

Hessian.
Let vλ := f − Tuλ denote the ‘texture’ at scale λ associated with the blurring model (2.1a),

[uλ, vλ] = arg inf
Tu+v=f

QT (f, λ).

Starting with λ = λ0 in (2.1a),

[u0, v0] = arg inf
Tu+v=f

QT (f, λ0)(2.2a)

we proceed, by iterating at the dyadic scales λj := λ02
j

[uj+1, vj+1] = arg inf
Tuj+1+vj+1=vj

Q(vj, λj+1), λj := λ02
j , j = 0, 1, . . . .(2.2b)

Thus, we have vj = Tuj+1 + vj+1 where v−1 := f . Summing the last recursive relation, we end
up with hierarchical representation of the blurred image f

f = Tu0 + Tu1 + ... + Tuk−1 + Tuk + vk,(2.3)

which in turn paves the way for hierarchical, multiscale denoised expansion

u ∼
=

m∑

j=0

uj.(2.4)

We note that the last expansion needs to be truncated at appropriately chosen finite m in
order to avoid the ill-posedness which must occur as we accumulate infinitely many terms,
approaching the ”inversion” of the ill-conditioned T .

2.1. Hierarchical decomposition using QT -minimizers. To study the hierarchical expan-
sions (2.4), we first characterize the minimizers of the QT -functionals (2.1). The characteriza-
tion summarized in theorem below extends Meyer’s result [Me02, Theorem 4] (and we also refer
to [ACM04, Chapter1] for related characterization of minimizers involving dual functionals).

We recall that the regularizing functional ‖f‖ in (2.1b) is a semi-norm and we define its dual
w.r.t the L2(Ω) scalar product 〈·, ·〉,

‖f‖∗ := sup
‖h‖6=0

〈f, h〉
‖h‖ ,(2.5)

so that the usual duality holds

〈f, h〉 ≤ ‖h‖‖f‖∗(2.6)

We say that (f, h) is an extremal pair if equality holds above. The theorem below characterizes
u as minimizer of the QT -functional if and only if u and T ∗(f − Tu) form an extremal pair.

Theorem 2.1. Let T : L2(Ω) → L2(Ω) be a linear continuous blurring operator with adjoint
T ∗ and let QT denote the associated functional (2.1a).

(i) The variational problem (2.1) admits a minimizer u. Moreover, if ‖ · ‖ is strictly convex,
then a minimizer u with ‖u‖ 6= 0 is unique.

(ii) u is a minimizer of (2.1) if and only if

〈
u, T ∗(f − Tu)

〉
= ‖u‖ · ‖T ∗f − T ∗Tu‖∗ =

‖u‖
2λ

.(2.7)
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The detailed proof of the theorem, whose second part was sketched in [Me02]), is postponed
to the end of this section. The next two remarks lead to refinement of theorem 2.1, depending
on the size of ‖T ∗f‖∗.

Remark 2.1. [The trivial minimizer]. More can be said in case f consists mostly of texture,
in the sense that

‖T ∗f‖∗ ≤
1

2λ
.(2.8)

Indeed, if (2.8) holds, then the characterization of the minimizer u in (2.7) implies

‖u‖
2λ

=
〈
u, T ∗f

〉
−

〈
u, T ∗Tu

〉
≤ ‖u‖

2λ
− ‖Tu‖2

L2,

and hence Tu = 0. But then QT (f, λ) = ‖u‖ + λ‖f‖2
L2 implies that u ≡ 0 is a minimizer of

(2.1), with QT (f, λ) = λ‖f‖2
L2 . The converse of this assertion also holds. We summarize with

the following corollary.

Corollary 2.2. [The case ‖T ∗f‖∗ ≤ 1/2λ]. Let T : L2(Ω) → L2(Ω) be a linear continuous
blurring operator with adjoint T ∗ and let QT denote the associated functional (2.1a). Then
‖T ∗f‖∗ ≤ 1

2λ
if and only if u ≡ 0 is a minimizer of (2.1).

Proof. Assume ‖T ∗f‖∗ ≤ 1/2λ. We have already seen that u ≡ 0 is a minimizer. One can also
argue directly that since 2λ〈T ∗f, h〉 ≤ ‖h‖ for all h ∈ BV (Ω), then

‖h‖+ λ‖f − Th‖2
L2(Ω) = ‖h‖ + λ‖f‖2

L2(Ω) − 2λ〈f, Th〉 + λ‖Th‖2
L2(Ω)

= ‖h‖ − 2λ〈T ∗f, h〉 + λ‖f‖2
L2(Ω) + λ‖Th‖2

L2(Ω)

≥ λ‖f‖2
L2(Ω) + λ‖Th‖2

L2(Ω) ≥ λ‖f − T0‖2
L2(Ω) + ‖0‖,

and therefore u ≡ 0 is a minimizer of (2.1a). It remains to verify the ”if” part, namely, if u ≡ 0
is a minimizer of (2.1), then for all h ∈ BV (Ω) we have,

λ‖f‖2
L2(Ω) ≤ λ‖Th − f‖2

L2(Ω) + ‖h‖,(2.9)

or

2λ〈f, Th〉 ≤ λ‖Th‖2
L2(Ω) + ‖h‖.

Rescaling h → εh, we obtain

2λε〈f, Th〉 ≤ λε2‖Th‖2
L2(Ω) + ε‖h‖.

Dividing by ε and letting ε → 0+, yields 2λ〈T ∗f, h〉 = 2λ〈f, Th〉 ≤ ‖h‖ for all h ∈ BV (Ω) and
we conclude ‖T ∗f‖∗ ≤ 1/2λ.

Remark 2.2. [Equivalence classes]. Consider the p-order semi-norm in (2.1b), ‖u‖ ≡ ‖u‖p :=∫
Ω

φ(Dpu) and assume

‖T ∗f‖∗ < ∞.

We note that ‖ · ‖∗ ≡
(
‖ · ‖p

)
∗ should be considered on the complement of appropriate equiv-

alence classes of “modulo polynomials of degree p”. Indeed, since ‖h + P‖p = ‖h‖p for any
polynomial P = P (x) of degree ≤ p − 1, we have for arbitrary constant c,

〈f, h + cP 〉
‖h + cP‖ =

〈f, h〉 + 〈f, cP 〉
‖h‖ =

〈f, h〉
‖h‖ + c

〈f, P 〉
‖h‖ .
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Thus, ‖T ∗f‖∗ < ∞, implies 〈T ∗f, P 〉 = 0 for all deg P ≤ p − 1.
In particular, if we assume that

1

2λ
< ‖T ∗f‖∗ < ∞,

then a minimizer of QT (f) does not vanish, ‖u‖ 6= 0. Otherwise, if ‖u‖ = 0 then u is a
polynomial of degree ≤ p − 1; but by the preceding argument, the polynomial u should be
orthogonal to T ∗f and hence

QT (f, λ) = λ‖f − Tu‖2
L2 = λ

(
‖f‖2

L2 + ‖Tu‖2
L2

)
,

which is minimized when Tu = 0. Given that ‖u‖ = Tu = 0, one can follow the proof of
corollary 2.2, starting with (2.9) and concluding that ‖T ∗f‖∗ ≤ 1/2λ, which contradicts our
assumption. We can summarize this case in the following corollary.

Corollary 2.3. [The case ‖T ∗f‖∗ > 1/2λ]. Let T : L2(Ω) → L2(Ω) be a linear continuous
blurring operator with adjoint T ∗ and let QT denote the associated functional (2.1a) with ‖ · ‖ =
‖ · ‖p. Assume that

1

2λ
< ‖T ∗f‖∗ < ∞.

Then u is a minimizer of (2.1) if and only if u and T ∗(f − Tu) is an extremal pair and

‖T ∗f − T ∗Tu‖∗ =
1

2λ
.(2.10)

Moreover, if ‖ · ‖ is strictly convex then the minimizer u is unique.

Proof. We can now divide the equality on the right of (2.7) by ‖u‖ = ‖u‖p 6= 0. Moreover, since
‖T ∗u‖∗ > 1/2λ then by remark 2.2, ‖u‖ 6= 0 and uniqueness follows from theorem 2.1(i).

Equipped with theorem 2.1, we can extend the (BV,L2)-hierarchical decompositions intro-
duced in TNV to general QT -functionals.

Theorem 2.4.
(i) [Hierarchical expansion]. Let f ∈ L2(Ω) and consider the dyadically-based QT decomposition
(2.2). Then f admits the following hierarchical expansion

f ∼
=

∞∑

j=0

Tuj;(2.11a)

here, the ∼
= should be interpreted as the convergence,

∑k
j=0 Tuj → f in the weak ‖ · ‖-sense,

‖T ∗(f −
k∑

j=0

Tuj)‖∗ =
1

λ02k+1
.(2.11b)

(ii) [Energy decomposition]. The following energy estimate holds

∞∑

j=0

[ 1

λj
‖uj‖ + ‖Tuj‖2

L2(Ω)

]
≤ ‖f‖2

L2(Ω), λj := λ02
j .(2.12a)
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Moreover, if f ∈ BV (Ω) then equality holds in (2.12a),

∞∑

j=0

[ 1

λj
‖uj‖ + ‖Tuj‖2

L2(Ω)

]
= ‖f‖2

L2(Ω), f ∈ BV (Ω).(2.12b)

We note in passing that the BV regularity assumption can be relaxed for the energy decompo-
sition, (2.12b), to hold; consult [TNV04, Corollary 2.3].

Proof. If ‖T ∗f‖∗ ≤ 1/2λ then by corollary 2.2, the minimizer of (2.1a), [uλ, vλ] = [0, f ]; other-
wise

‖T ∗vλ‖∗ =
1

2λ
, 〈Tuλ, vλ〉 =

1

2λ
‖uλ‖.(2.13)

The first statement (2.11a) then follows from the basic hierarchical expansion, f =
∑k

0 Tuj +
vk while noting that ‖T ∗vk‖∗ = 1/2λk . For the second statement, (2.12), we begin by squaring
the basic refinement step, Tuj+1 + vj+1 = vj,

‖vj+1‖2
L2(Ω) + ‖Tuj+1‖2

L2(Ω) + 2〈Tuj+1, vj+1〉 = ‖vj‖2
L2(Ω), j = −1, 0, 1, . . . .(2.14)

Observe that the last equality holds for j = −1 with v−1 interpreted as v−1 := f . We recall
that [uj+1, vj+1] is a minimizing pair for QT (vj, λj+1) and hence, by (2.13),

2〈Tuj+1, vj+1〉 =
1

λj+1
‖uj+1‖,

yielding 1
λj+1

‖uj+1‖ + ‖Tuj+1‖2
L2(Ω) = ‖vj‖2

L2(Ω) − ‖vj+1‖2
L2(Ω). We sum up obtaining (2.12a)

k∑

j=0

[ 1

λj
‖uj‖ + ‖Tuj‖2

L2(Ω)

]
=

k−1∑

j=−1

[ 1

λj+1
‖uj+1‖ + ‖Tuj+1‖2

L2(Ω)

]
=

= ‖v−1‖2
L2(Ω) − ‖vk‖2

L2(Ω) = ‖f‖2
L2(Ω) − ‖vk‖2

L2(Ω) ≤ ‖f‖2
L2(Ω).

Given that f has BV regularity, one can follow the argument in [TNV04, Theorem 2.2] to
conclude the equality (2.12b).

We conclude this section with the promised

Proof. of theorem 2.1.
(i) The existence of a minimizer for the QT -functional follows from standard arguments which

we omit, consult e.g., [Jo07, Section 8.6]. We address the issue of uniqueness. Assume u1 and
u2 are minimizers

‖ui‖ + λ‖f − Tui‖2
L2 = jmin, i = 1, 2

then by standard line of argument we consider the average u3 := (u1 + u2)/2 to find

jmin ≤ ‖u3‖ + λ‖f − Tu3‖2
L2

≤ 1

2

(
‖u1‖ + λ‖f − Tu1‖2

L2 + ‖u2‖ + λ‖f − Tu2‖2
L2

)
− 1

4
‖T (u1 − u2)‖2

L2

≤ jmin − 1

4
‖T (u1 − u2)‖2

L2.
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Thus, u1 − u2 belongs to the kernel of T . We then end up with the one-parameter family of
minimizers, uθ := u1 + θ(u2 − u1), θ ∈ [0, 1],

jmin ≤ ‖uθ‖ + λ‖f − Tuθ‖2
L2

≤ θ‖u2‖ + (1 − θ)‖u1‖ + θλ‖f − Tu2‖2
L2 + (1 − θ)λ‖f − Tu1‖2

L2 = jmin.

Clearly, the two minimizers satisfy ‖u1‖ = ‖u2‖ and we conclude that the ball ‖u‖ = ‖u1‖ 6= 0
contains the segment {uθ, θ ∈ [0, 1]}, which by strict convexity, must be the trivial segment,
i.e., u2 = u1.

(ii) If u is a minimizer of (2.1a), namely, if for any h ∈ BV (Ω) we have

λ‖f − T (u + εh)‖2
L2(Ω) + ‖u + εh‖ ≥ λ‖f − Tu‖2

L2(Ω) + ‖u‖,

then

λε2‖Th‖2
L2(Ω) − 2λε〈Th, f − Tu〉 + ‖u + εh‖ ≥ ‖u‖.(2.15)

Since ‖ · ‖ is sublinear, the last inequality yields

λε2‖Th‖2
L2(Ω) − 2λε〈Th, f − Tu〉 + ‖u‖+ |ε|‖h‖ ≥ ‖u‖,

or, after division by ε > 0,

‖h‖ + λε‖Th‖2
L2(Ω) ≥ 2λ〈Th, f − Tu〉.

Letting ε ↓ 0+, we obtain ‖h‖ ≥ 2λ〈Th, f − Tu〉 for any h ∈ BV (Ω) and hence

1

2λ
≥ sup

‖h‖6=0

〈h, T ∗(f − Tu)〉
‖h‖ = ‖T ∗f − T ∗Tu‖∗.(2.16)

To confirm (2.7) it remains verify the reverse inequality in (2.16). To this end we set h = u
and −1 < ε < 0 in (2.15), yielding

λε2‖Tu‖2
L2(Ω) + (1 + ε)‖u‖ ≥ ‖u‖ + 2λε〈u, T ∗(f − Tu)〉,

or

λε2‖Tu‖2
L2(Ω) + ε‖u‖ ≥ 2λε〈u, T ∗(f − Tu)〉.

Dividing by ε and letting ε ↑ 0−, we obtain 1
2λ
‖u‖ ≤ 〈u, T ∗(f −Tu)〉. This, together with (2.16)

implies,

1

2λ
‖u‖ ≤ 〈u, T ∗(f − Tu)〉 ≤ ‖u‖‖T ∗f − T ∗Tu‖∗ ≤

1

2λ
‖u‖.

so that the last inequalities become equalities and (2.7) follows.
Conversely, we show that if u satisfies (2.7) then it is the desired minimizer. To this end, we

rewrite

‖f − T (u + h)‖2
L2(Ω) ≡

〈
(f − Tu)− Th, f − T (u + h)

〉

≡
〈
f − Tu, f + T (u + h)

〉
− 2

〈
f − Tu, T (u + h)

〉
−

〈
Th, f − Tu

〉
+ ‖Th‖2

L2(Ω)

≡ ‖f − Tu‖2
L2(Ω) − 2

#1︷ ︸︸ ︷〈
f − Tu, T (u + h)

〉
+2

#2︷ ︸︸ ︷〈
Tu, f − Tu

〉
+‖Th‖2

L2(Ω).
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Now, assumption (2.7), ‖T ∗(f − Tu)‖∗ = 1
2λ

, implies 2λ(#1) ≤ ‖u + h‖ and 2λ(#2) = ‖u‖.
We conclude that for any h ∈ BV (Ω),

‖u + h‖ + λ‖f − T (u + h)‖2
L2(Ω)

= ‖u + h‖ − 2λ(#1) + 2λ(#2) + λ‖f − Tu‖2
L2(Ω) + λ‖Th‖2

L2(Ω) ≥ ‖u‖ + λ‖f − Tu‖2
L2(Ω).

Thus, u is a minimizer of (2.1).

Remark that a lack of uniqueness is demonstrated in an example of [Me02, pp. 40], using
the `∞-unit ball, which in turn lacks strict convexity. Thus, strict convexity is necessary and
sufficient for uniqueness.

2.2. Discretization of Euler-Lagrange and numerical results. We consider for illustra-
tion the case of the total variation [RO94], therefore ‖u‖ =

∫
Ω
|Du|. In practice, we simplify

the formulation by working only on W 1,1(Ω) and we write ‖u‖ =
∫

Ω
|∇u|dxdy. In order to

construct the hierarchical decomposition of f , we use the associated Euler-Lagrange equation
of Q(f, λ)

T ∗Tuλ = T ∗f +
1

2λ
div

( ∇uλ

|∇uλ|

)
.

When working on a bounded domain Ω, we augment the Euler-Lagrange equations by the
following Neumann boundary condition:

∂uλ

∂n
|∂Ω = 0.

The hierarchical decomposition, f ∼
∑k

j=0 Tuj = T
∑k

j=0 uj, is obtained. Note that we are

really interested in the deblurred image u =
∑k

j=0 uj, from which the uj’s are constructed as

(approximate) solutions of the recursive relation governed by the following PDE:

T ∗Tuj+1 −
1

2λj+1
div

( ∇uj+1

|∇uj+1|

)
=

T ∗vj︷ ︸︸ ︷
− 1

2λj
div

( ∇uj

|∇uj|

)
.

We implement our algorithm for this type of image in essentially the same way as for the
case without blurring (see [TNV04]). The only difference is that we have to deal with the
blurring operator T , a Gaussian kernel in our experiments, and in this we follow the method of
discretization in [AV97] and [Ve01]. The first step is to remove the singularity when |∇uλ| = 0,
by replacing QT (f, λ) with

Qε
T (f, λ) := inf

u∈BV

{∫

Ω

√
ε2 + |∇u|2dxdy + λ‖f − Tu‖2

L2(Ω)

}
.

We find the minimizer, uλ ≡ uλ,ε of the regularized functional associated with Qε
T , at each step

of our hierarchical decomposition. The associated Euler-Lagrange equations are

T ∗Tuλ = T ∗f +
1

2λ
div

( ∇uλ√
ε2 + |∇uλ|2

)
in Ω,(2.17a)

∂uλ

∂n
= 0 on ∂Ω,(2.17b)
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that we solve by a dynamic gradient descent scheme (x, y, t) 7→ u(x, y, t),

∂u

∂t
+ T ∗Tuλ = T ∗f +

1

2λ
div

( ∇uλ√
ε2 + |∇uλ|2

)
in Ω × [0,+∞), u(x, y, 0) = f(x, y) in Ω.

(2.18)

As in TNV, we use a computational grid, (xi := ih, yj := jh, tn := n4t), to cover the
domain Ω for t ≥ 0, where h is the cell size. Let D+ = D+(h), D− = D−(h) and D0 :=
(D+ + D−)/2 denote the usual forward, backward and centered divided difference. As an
example of differencing in the x-direction, Dx

+ui,j = (ui+1,j − ui,j)/h.
We discretize (2.18) as follows

un+1
i,j − un

i,j

4t
+ T ∗Tun

i,j = T ∗fi,j +
1

2λ
Dx

−

[ (un
i+1,j − un+1

i,j )/h√
ε2 + (Dx

+un
i,j)

2 + (Dy
+un

i,j)
2

]

+
1

2λ
Dy

−

[ (un
i,j+1 − un+1

i,j )/h√
ε2 + (Dx

+un
i,j)

2 + (Dy
+un

i,j)
2

]
.

Following [AV97, Ve01], we will work with convolution-type T ’s which are realized by sym-
metric matrices, (Cαβ)α,β=1,d,

Tui,j :=

d∑

α,β=1

Cαβui+d/2−α,j+d/2−β,

d∑

α,β=1

Cαβ = 1.

Since T is assumed to be symmetric, T ∗Tu is approximated by

T 2ui,j =
d∑

α,β=1

d∑

γ,δ=1

CαβCγδui+d−α−γ,j+d−β−δ .

To implement our decomposition, either a fixed point Jacobi or Gauss-Seidel iterative method
can be used to solve the discrete regularized Euler-Lagrange equations above. Introducing the
notations:

cE(un
i,j) =

1√
ε2 +

(
un

i+1,j − un
i,j

h

)2

+

(
un

i,j+1 − un
i,j

h

)2
,(2.19a)

cW (un
i,j) =

1√
ε2 +

(
un

i,j − un
i−1,j

h

)2

+

(
un

i−1,j+1 − un
i−1,j

h

)2
,(2.19b)

cS(un
i,j) =

1√
ε2 +

(
un

i+1,j − un
i,j

h

)2

+

(
un

i,j+1 − un
i,j

h

)2
,(2.19c)

cN (un
i,j) =

1√
ε2 +

(
un

i+1,j−1 − un
i,j−1

h

)2

+

(
un

i,j − un
i,j−1

h

)2
,(2.19d)
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we have

un+1
i,j + 24tλh2T ∗Tun

i,j + 4t
(
cE(un

i,j) + cW (un
i,j) + cS(un

i,j) + cN (un
i,j)

)
un+1

i,j

= un
i,j + 4t

(
cE(un

i,j)u
n
i+1,j + cW (un

i,j)u
n
i−1,j + cS(un

i,j)u
n
i,j+1 + cN (un

i,j)u
n
i,j−1 + 2λh2T ∗fi,j

)
.

By using the most recent values of the ui,j’s, we implement the Gauss-Seidel scheme.
In Figure 2.1, we show a test image, its blurry version (with Gaussian blur, no noise),

the results obtained using the Rudin-Osher model [RO94], and the results obtained using the
hierarchical model. The proposed hierarchical model gives improved results over the standard
RO model, in terms of the root mean square error,

rmse :=

√∑
i,j(uorig,i,j − urestored,i,j)2

∑
i,j 1

.

Similarly Figure 2.2 illustrates how the hierarchical decomposition works for noisy blurred
images, again as an improvement over the Rudin-Osher model.

3. The hierarchical (SBV,L2) decomposition

We want to construct the hierarchical decomposition based on the Mumford-Shah functional
[MS89]. To this end we consider its elliptic approximation of Ambrosio and Tortorelli [AT92],

ATρ(f, λ) := inf
{u,v,w | u+v=f}

{
µ

√∫

Ω

(w2 + ρερ)|∇u|2dx + ρ‖∇w‖2
L2(Ω) +

‖w − 1‖2
L2(Ω)

4ρ
+ λ‖v‖2

L2(Ω)

}
,

where ερ → 0 as ρ ↓ 0 and λ, µ are positive weight parameters.

Remark 3.1. Note that we modified the ATρ-functional, where the square-root first-term on
the right is replacing the original term,

∫
Ω
(w2 + ρερ)|∇u|2dx, appearing in Ambrosio-Tortorelli

work [AT92]. Our modified ATρ-functional does not affect the main properties of the seg-
mentation model, however; it is introduced here in order to enable the characterization of
ATρ-minimizers in section 3.1 below. Our numerical calculations will then utilize the original
formulation ATρ-functional.

Let [uλ, vλ] be the minimizer of ATρ(f, λ) (depending on w). Here f ∈ L∞(Ω) and uλ is
restricted to the smaller SBV space (— a special subclass of BV space, consisting of measure
gradients free of the Cantor component, [AT92]), while the texture vλ lives in L2. We proceed to
construct the hierarchical (SBV,L2) decomposition of f in the same manner as before, letting
[uj+1, vj+1] be the AT minimizer

[uj+1, vj+1] = arg inf
u,v,w,u+v=vj

ATρ(vj, λj), λj = λ02
j.

We end up with the hierarchical decomposition

f = u0 + u1 + ... + uk + vk.

Here, at each hierarchical step, we also obtain the edge detectors 1 − wj = 1 − wλj , which are
(essentially) supported along the boundaries of objects enclosed by edges identified by uj.
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original f uRO vRO + 128

uλ0

∑1
i=0 uλi

∑3
i=0 uλi

∑5
i=0 uλi

∑7
i=0 uλi

∑9
i=0 uλi

∑11
i=0 uλi

∑13
i=0 uλi

∑15
i=0 uλi

∑17
i=0 uλi

∑19
i=0 uλi v19 + 128

Figure 2.1: 1st row, from left to right: original test image, its blurry version f , and Rudin-
Osher restoration uRO, vRO = f − uRO + 128, rmse=0.1066. RO parameters: λ = 2000, h = 1,
4t = 0.1. 2nd to last rows, left to right: hierarchical recovery from the same blurry initial
image f using k = 19 steps, shown every other one, and residual at step 19. Parameters:
λ0 = 1, 4t = 0.1, h = 1, and λk = 2kλ0. Final root mean square error, rmse= 0.0922.

3.1. Characterization of (SBV,L2)-minimizers. We proceed along the lines of our analysis
of general Q-functionals in section 2.1. We begin with a general characterization of ATρ-
minimizers as extremal pairs. To this end, we introduce the weighted spaces for given w ∈
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f uRO vRO + 128

uλ0

∑1
i=0 uλi

∑2
i=0 uλi

∑3
i=0 uλi

∑4
i=0 uλi

∑5
i=0 uλi vλ5

Figure 2.2: 1st row, from left to right: blurry-noisy version f , and Rudin-Osher restoration
uRO, vRO = f − uRO + 128, rmse =0.2028. RO parameters λ = 0.5, h = 1, 4t = 0.025. The
other rows, left to right: the hierarchical recovery of u from the same blurry-noisy initial image
f using 6 steps. Parameters: λ0 = 0.02, 4t = 0.025, h = 1, and λk = 2kλ0, rmse= 0.2011.

H1(Ω),

|h|H1
w(Ω) :=

√∫

Ω

(w2 + ρερ)|∇h|2dx,

and we let

‖f‖H−1
w (Ω) := suph∈H1

w(Ω)〈f, h〉/|h|H1
w(Ω)

denote the dual norm. We have now the following characterization of the minimizers u,w of
the ATρ-energy.

Theorem 3.1. If u,w ∈ [0, 1] are minimizers of the ATρ-energy, then

‖f − u‖H−1
w (Ω) =

µ

2λ
, and 〈f − u, u〉 =

µ

2λ
|u|H1

w(Ω).(3.1)
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Proof. Let [u,w] be a minimizing pair. Considering the variation of ATρ only with respect to
u, we find that for any h ∈ H1(Ω), we have

µ|u|H1
w(Ω) + λ‖f − u‖2

L2(Ω) ≤ µ|u + εh|H1
w(Ω) + λ‖f − u − εh‖2

L2(Ω).

The triangle inequality yields the “first variation” (or more precisely, sub-differential)

2λε〈f − u, h〉 ≤ λε2‖h‖2
L2(Ω) + µε|h|H1

w(Ω).(3.2)

For ε > 0 this gives 2λ〈f − u, h〉 ≤ λε‖h‖2
L2(Ω) + µ|h|H1

w(Ω), and as ε → 0+, we deduce that for

all h ∈ H1
w(Ω),

〈f − u, h〉
|h|H1

w(Ω)

≤ µ

2λ
,

or

‖f − u‖H−1
w (Ω) ≤

µ

2λ
.(3.3)

Now, if we set h = u in (3.2), we find

2λε〈f − u, u〉 ≤ λε2‖u‖2
L2(Ω) + µε|u|H1

w(Ω).

Again, first dividing by ε < 0 and let ε ↑ 0−, we obtain

〈f − u, u〉 ≥ µ

2λ
|u|H1

w(Ω).(3.4)

Combining (3.3) and (3.4) we find,

µ

2λ
|u|H1

w(Ω) ≤ 〈f − u, u〉 ≤ ‖f − u‖H−1
w (Ω)|u|H1

w(Ω) ≤
µ

2λ
|u|H1

w(Ω),

confirming that the last inequalities are in fact equalities and thus concluding the proof.

As before, consult corollary 2.2, the fact that the image f contains too much texture is linked
to a trvivial ATρ-minimizer. One part of this link is the content of the following theorem.

Theorem 3.2. If u ≡ 0 and w ≡ 1 are minimizers of the ATρ-energy, then

‖f‖H−1(Ω) ≤
µ
√

1 + ρερ

2λ
.(3.5)

Proof. If [u,w] ≡ [0, 1] is a ATρ-minimizer then for any h ∈ H1(Ω), that

λ‖f‖2
L2(Ω) ≤ εµ

√∫

Ω

(1 + ρερ)|∇h|2dx + λ‖f − εh‖2
L2(Ω),

or, after expanding terms,

2ελ〈f, h〉 ≤ ε2λ‖h‖2
L2(Ω) + εµ

√∫

Ω

(1 + ρερ)|∇h|2dx.

As ε ↓ 0+, we deduce that

2λ〈f, h〉 ≤ µ

√∫

Ω

(1 + ρερ)|∇h|2dx,

and (3.5) follows.
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Equipped with the characterization of ATρ-minimizers, we turn to analyze the corresponding
hierarchical decomposition.

Theorem 3.3.
(i)[Hierarchical decomposition]. Consider f ∈ L2(Ω). Then f admits the following hierarchical
decomposition

f ∼
=

∞∑

j=0

uj,(3.6a)

where ∼
= is interpreted as weak H−1

w -convergence of the residuals

‖f −
k∑

j=0

uj‖H−1
wk

(Ω) =
µ

λ02k+1
.(3.6b)

Here, wk is computed recursively as the weighting minimizer of ATρ(f −
∑k

j=0 uj , λ02
j).

(ii)[Energy decomposition]. The following ‘energy’ estimate holds

∞∑

j=0

[ 1

λj
|uj|H1

wj
(Ω) + ‖uj‖2

L2

]
≤ ‖f‖2

L2, λj := λ02
j .(3.7)

Moreover, if f is sufficiently smooth then equality holds in (3.7).

Proof. The first statement, (3.6), follows from the basic hierarchical expansion, f =
∑k

0 uj +vk,
while noting that ‖vk‖H−1

wk
(Ω) = µ/2λk. For the second statement, (3.7), we begin by squaring

the basic refinement step, uj+1 + vj+1 = vj,

‖vj+1‖2
L2 + ‖uj+1‖2

L2 + 2〈uj+1, vj+1〉 = ‖vj‖2
L2, j = −1, 0, 1, . . . .(3.8)

Observe that the last equality holds for j = −1 with v−1 interpreted as v−1 := f . We recall
that [uj+1, vj+1] is a minimizing pair for ATρ(vj, λj+1) and hence, by (3.1),

2〈uj+1, vj+1〉 =
µ

λj+1
|uj+1|H1

wj+1
(Ω),

yielding µ
λj+1

|uj+1|H1
wj+1

(Ω) + ‖uj+1‖2
L2 = ‖vj‖2

L2 − ‖vj+1‖2
L2. We sum up obtaining

k∑

j=0

[ µ

λj
|uj|H1

wj
(Ω) + ‖uj‖2

L2

]
=

k−1∑

j=−1

[ µ

λj+1
|uj+1|H1

wj+1
(Ω) + ‖uj+1‖2

L2

]
=

= ‖v−1‖2
L2 − ‖vk‖2

L2 = ‖f‖2
L2 − ‖vk‖2

L2 ≤ ‖f‖2
2.

3.2. Discretization of Euler-Lagrange and numerical results. We consider the (original)
Ambrosio-Tortorelli functional [AT92] (neglecting the term ρερ)

inf
{u,v,w | u+v=f}

{
µ

∫

Ω

(w2)|∇u|2dx + ρ‖∇w‖2
L2(Ω) +

‖w − 1‖2
L2(Ω)

4ρ
+ λ‖v‖2

L2(Ω)

}
.
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The associated Euler-Lagrange equations are




λuλ − µ∇(w2
λ∇uλ) = λf,

−4wλ +
1 + 4µρ|∇uλ|2

4ρ2

(
wλ − 1

1 + 4µρ|∇uλ|2

)
= 0.

We construct the hierarchical decomposition in the same manner as before, so f ∼
∑k

j=0 uj

with the additional feature that the accumulated wj’s give the set of edges of the image u.
Discretization of the Euler-Lagrange equations yields





λfi,j = λui,j − µDx
−(w2

i,jD
x
+ui,j) − µDy

−(w2
i,jD

y
+ui,j),

Dx
−Dx

+wi,j + Dy
−Dy

+wi,j =
1 + 4µρ[(Dx

0ui,j)
2 + (Dy

0ui,j)
2]

4ρ2

(
wi,j −

1

1 + 4µρ[(Dx
0ui,j)2 + (Dy

0ui,j)2]

)
.

Using the notation

C1 : = λ +
µ

h2
(2w2

i,j + w2
i−1,j + w2

i,j−1)

C2 : = 1 + 4µρ

√(ui+1,j − ui−1,j

2h

)2

+
(ui,j+1 − ui,j−1

2h

)2

+
16ρ2

h2
,

we have




ui,j =
1

C1

[
λfi,j +

µ

h2
(w2

i,j(ui+1,j + ui,j+1) + w2
i−1,jui−1,j + w2

i,j−1ui,j−1)
]

wi,j =
1

C2

[
1 +

4ρ2

h2
(wi+1,j + wi−1,j + wi,j+1 + wi,j−1)

]
.

In order to minimize the grid effect, we alternate the above scheme with the following one,
obtained by substituting D+ for D− (and vice-versa) in the discretization of the above Euler-
Lagrange equation:

D1 : = λ +
µ

h2
(2w2

i,j + w2
i+1,j + w2

i,j+1)

D2 : = 1 + 4µρ

√(ui+1,j − ui−1,j

2h

)2

+
(ui,j+1 − ui,j−1

2h

)2

+
16ρ2

h2
,

yielding




ui,j =
1

D1

[
λfi,j +

µ

h2
(w2

i,j(ui−1,j + ui,j−1) + w2
i+1,jui+1,j + w2

i,j+1ui,j+1)
]

wi,j =
1

D2

[
1 +

4ρ2

h2
(wi+1,j + wi−1,j + wi,j+1 + wi,j−1)

]
.

In figures 3.3 and 3.4 we demonstrate the hierarchical ATρ-decompositions. We can clearly
see that we converge to the desired image as well as obtaining a hierarchical representation,∑

2−jwj, of the contours of the image f .
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f uλ0

∑1
i=0 uλi

∑2
i=0 uλi

∑3
i=0 uλi

∑4
i=0 uλi

∑5
i=0 uλi

∑6
i=0 uλi

∑7
i=0 uλi

∑8
i=0 uλi

∑9
i=0 uλi

Figure 3.3: The sum of the ui’s using the Ambrosio-Tortorelli approximation of the image of a
woman, using 10 steps. Parameters: λ0 = .25, µ = 5, ρ = .0002, and λk = 2kλ0.

4. Hierarchical decomposition of images with multiplicative noise

Following [RO94], [RLO03], we consider a multiplicative degradation model where we are
given an image f = u · v, with u > 0 being the original image and v models the multiplicative
noise, normalized such that

∫
Ω

v(x, y)dxdy = 1, where for simplicity, we assume that |Ω| = 1.
Let uλ be the minimizer of the corresponding total variation functional in the multiplicative
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f wλ0

∑1
i=0

λ0

λi
wλi

∑2
i=0

λ0

λi
wλi

∑3
i=0

λ0

λi
wλi

∑4
i=0

λ0

λi
wλi

∑5
i=0

λ0

λi
wλi

∑6
i=0

λ0

λi
wλi

∑7
i=0

λ0

λi
wλi

∑8
i=0

λ0

λi
wλi

∑9
i=0

λ0

λi
wλi

Figure 3.4: The weighted sum of the wi’s using the Ambrosio-Tortorelli approximation of the
image of a woman, using 10 steps. Parameters: λ0 = .25, µ = 5, ρ = .0002, and λk = 2kλ0.

case [RO94], [CL95] (in a simplified form, without a mean constraint),

M(f, λ;BV,L2) := inf
u∈BV+(Ω)

{
λ
∥∥∥f

u
− 1

∥∥∥
2

L2(Ω)
+ |u|BV (Ω)

}
.(4.1)

If f > 0 a.e. in Ω, then (4.1) has at least a minimizer u ≥ 0 [CL95].
Setting vλ := f

uλ
we end up with the one scale decomposition f = uλvλ. We construct

the hierarchical decomposition as in TNV, except that sums and differences are replaced by
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f uλ0

∑1
i=0 uλi

∑2
i=0 uλi

∑3
i=0 uλi

∑4
i=0 uλi

∑5
i=0 uλi

∑6
i=0 uλi

∑7
i=0 uλi

∑8
i=0 uλi

∑9
i=0 uλi

Figure 3.5: The sum of the ui’s using the Ambrosio-Tortorelli approximation on the image of
a fingerprint. Parameters: µ = 5, ρ = .0002, λ0 = .25, k = 10, and λk = 2kλ0.
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f wλ0

∑1
i=0 wλi

∑2
i=0 wλi

∑3
i=0 wλi

∑4
i=0 wλi

∑5
i=0 wλi

∑6
i=0 wλi

∑7
i=0 wλi

∑8
i=0 wλi

∑9
i=0 wλi

Figure 3.6: The sum of the wi’s using the Ambrosio-Tortorelli approximation on the image of
a fingerprint. Parameters: µ = 5, ρ = .0002, λ0 = .25, k = 10, and λk = 2kλ0.
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products and quotients. Thus, the iterative step at scale λj = λ02
j reads, vj = uj+1vj+1, leading

to the multiplicative hierarchical decomposition

f = u0u1...uk × vk, λj = λ02
j .

4.1. Characterization of M-minimizers. We begin with characterization of theM(f, λ;BV,L2)-
minimizers. We show that [uλ, vλ] is a minimizer if it is an extremal pair, properly interpreted
in terms of the dual BV norm ‖ · ‖∗ (consult [Me02, Definition 10]).

Theorem 4.1. If u is a minimizer of (4.1) then

|u|BV (Ω) ·
∥∥∥ f

u2

(f

u
− 1

)∥∥∥
∗

=
|u|BV (Ω)

2λ
, and

〈 f

u2

(f

u
− 1

)
, u

〉
=

1

2λ
|u|BV (Ω).(4.2)

Proof. Let

g(ε) :=
( f

u + εh
− 1

)2

.(4.3)

Taylor’s expansion gives g(ε) =
(

f
u
− 1

)2

− 2ε
(

f
u
− 1

)
fh
u2 + ε2

2
g′′(εξ) and hence

λ
∥∥∥ f

u + εh
− 1

∥∥∥
2

L2(Ω)
≤ λ

∥∥∥f

u
− 1

∥∥∥
2

L2(Ω)
− 2λε

〈f

u
− 1,

fh

u2

〉
+ λ

ε2

2
max

x
|g′′(x)|.

This inequality, together with the fact that u is an M-minimizer satisfies for all h ∈ BV (Ω),

λ
∥∥∥f

u
− 1

∥∥∥
2

L2(Ω)
+ |u|BV (Ω) ≤ λ

∥∥∥ f

u + εh
− 1

∥∥∥
2

L2(Ω)
+ |u + εh|BV (Ω),

imply that

2λε
〈f

u
− 1,

fh

u2

〉
≤ ε|h|BV (Ω) + λ

ε2

2
max

x
|g′′(x)|.(4.4)

Dividing by ε and letting ε ↓ 0+ (while noticing that limε→0
ε2

2
maxx |g′′(x)| = 0), yield that for

any h ∈ BV (Ω),

2λ
〈 f

u2

(f

u
− 1

)
, h

〉
≤ |h|BV (Ω);

thus
∥∥∥ f

u2

(f

u
− 1

)∥∥∥
∗
≤ 1

2λ
.(4.5)

Now let h = u in (4.4). Then, dividing by ε < 0, and letting ε ↑ 0−, we obtain
〈 f

u2

(f

u
− 1

)
, u

〉
≥

|u|BV (Ω)

2λ
.(4.6)

Combining (4.5) and (4.6) concludes the proof.

As before, theorem 4.1 could be refined, depending on the amount of texture present in f .
For example, compared with corollary 2.2, we have that f consists mostly of texture, if and
only if its M-minimizer is the trivial one which, in the multiplicative case, is given by u ≡ 1.
The following theorem confirms one-side of this implication.

Theorem 4.2. If u ≡ 1 is a minimizer of (4.1), then ‖f(f − 1)‖∗ ≤ 1
2λ

.
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Proof. Since u ≡ 1 is assumed to be M-minimizer, we have for any h ∈ BV (Ω)

λ
∥∥∥ f

1 + εh
− 1

∥∥∥
2

L2(Ω)
+ |1 + εh|BV (Ω) ≥ λ‖f − 1‖2

L2(Ω).

Revisiting g(ε) in (4.3) with u ≡ 1, we have

g(ε) :=
( f

1 + εh
− 1

)2

= (f − 1)2 − 2ε(f − 1)fh +
ε2

2
g′′(εξ).

The last two relations yield

λ‖f − 1‖2
L2(Ω) − 2λε〈h, f(f − 1)〉 + λε2

∫

Ω

h2

2
g′′(1)dx(4.7)

+λ

∫

Ω

O((εh)3)dx + ... + ε|h|BV (Ω) ≥ λ‖f − 1‖2
L2(Ω).(4.8)

Divide by ε and let ε ↓ 0+, to obtain that for all h ∈ BV (Ω)

|h|BV (Ω) ≥ 2λ〈h, f(f − 1)〉,

which means that ‖f(f − 1)‖∗ ≤ 1
2λ

.

4.2. Discretization of Euler-Lagrange and numerical results. Formally minimizingM(f, λ)
with respect to u yields the following associated Euler-Lagrange equation:

( f

uλ
− 1

)
·
(
− f

u2
λ

)
=

1

2λ
div

( ∇uλ

|∇uλ|

)
.

When working on a bounded domain Ω, we augment the Euler-Lagrange equations by the
following Neumann boundary condition:

∂uλ

∂n |∂Ω
= 0.

The hierarchical decomposition, f ∼
∏k

j=0 uj, is obtained, in which the uj’s are constructed

as (approximate) solutions of the recursive relation governed by the Euler-Lagrange equation.
To discretize the Euler-Lagrange equation, we begin by regularization of M(f, λ) to avoid

the singularity when |∇uλ| = 0. So, we have

Mε(f, λ) := inf
u∈BV

{
λ
∥∥∥f

u
− 1

∥∥∥
2

L2(Ω)
+

∫

Ω

√
ε2 + |∇u|2dxdy

}
.

This yields the associated Euler-Lagrange equations:

−f2

u3
λ

+
f

u2
λ

=
1

2λ
div

( ∇uλ√
ε2 + |∇uλ|2

)
,(4.9)

that we solve by a dynamic scheme (x, y, t) 7→ u(x, y, t):

∂u

∂t
=

f2

u3
− f

u2
+

1

2λ
div

( ∇u√
ε2 + |∇u|2

)
, u(x, y, 0) = f(x, y).(4.10)
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f uλ0

∏1
i=0 uλi

∏2
i=0 uλi

∏3
i=0 uλi

∏4
i=0 uλi

∏5
i=0 uλi

∏6
i=0 uλi

∏7
i=0 uλi

∏8
i=0 uλi

∏9
i=0 uλi vλ9 · 120

Figure 4.7: The recovery of u given an initial image of a woman with multiplicative noise, for
10 steps. Parameters: λ0 = .02, and λk = 2kλ0.

Let un
i,j ≈ u(xi, yj, n4t). The discretization that we have used is a linearized semi-implicit

scheme:

un+1
i,j − un

i,j

4t
=

f2
i,j

(un
i,j)

3
− fi,j

(un
i,j)

2

+
1

2λh2
(cEun

i+1,j + cW un
i−1,j + cSun

i,j+1 + cNun
i,j−1)

− 1

2λh2
(cE + cW + cS + cN )un+1

i,j ,
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or, solving for un+1
i,j ,

un+1
i,j =

( 1

1 + 4t
2λh2 (cE + cW + cS + cN )

)
·
[
un

i,j + 4t
f2

i,j

(un
i,j)

3
−4t

fi,j

(un
i,j)

2

+
4t

2λh2
(cEun

i+1,j + cW un
i−1,j + cSun

i,j+1 + cNun
i,j−1)

]
,

where the constants cE, cW , cS and cN are the same as before, (2.19).
We note in passing the issue of stability: in order to enable the necessary division by u 6= 0,

we shift f away from zero, adding a positive constant which is subtracted from the final result.
We demonstrate our hierarchical decomposition to the image f in figure 4.7. We can see that

just as in the case with additive noise, we must pay a price for the recovered texture, namely
the return of some noise. As in the case with additive noise, using a finer decomposition might
give improved results.
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